Differential degradation of matrix proteoglycans and edema development in rabbit lung.
نویسندگان
چکیده
The specific role of solid extracellular matrix components in opposing development of pulmonary interstitial edema was studied in adult anesthetized rabbits by challenging the lung parenchyma with an intravenous injection of a bolus of collagenase or heparanase. In 10 rabbits, pulmonary interstitial pressure (Pip) was measured by micropuncture in control and up to 3 h after collagenase or heparanase intravenous injection. With respect to control (Pip= -9.3 +/- 1.5 cmH2O, n = 10), both treatments caused a significant increase of Pip and of the wet weight-to-dry weight lung ratio. However, while tissue matrix stiffness was maintained after 60 min of collagenase, as indicated by the attainment of a positive Pip peak (Pip= 4.5 +/- 0.3 cmH2O, n = 5), this mechanical response was lost with heparanase (Pip= -0.6 +/- 1.3 cmH2O, n = 5). Biochemical analysis performed on a separate rabbit group (n = 15) showed an increased extraction of uronic acid with both enzymes, indicating a progressive matrix fragmentation. Gel chromatography analysis of the proteoglycan (PG) families showed that 60 min of both enzymatic treatments left the large-molecular-weight PGs (versican) essentially unaffected. However, the heparan-sulfate PG fraction was significantly cleaved, as indicated by a significant increase of the smaller PG fragments with heparanase, but not with collagenase. Hence, present data suggest that the integrity of the heparan-sulfate PGs is required to maintain the three-dimensional architecture of the pulmonary tissue matrix and in turn to counteract tissue fluid accumulation in situations of increased fluid filtration.
منابع مشابه
Proteoglycan involvement during development of lesional pulmonary edema.
We evaluated the effect of pancreatic elastase (7 IU iv) on pulmonary interstitial pressure (Pip) in in situ rabbit lungs by a micropuncture technique through the intact parietal pleura. Pip was -10.8 ± 2.2 (SD) cmH2O in the control condition, increased to +5.1 ± 1.7 cmH2O at ∼60 min [condition referred to as mild edema (ME)], and subsequently decreased to -0.15 ± 0.8 cmH2O, remaining steady fr...
متن کاملDevelopment of lung edema: interstitial fluid dynamics and molecular structure.
Pulmonary interstitium is maintained dehydrated at subatmospheric pressure (-10 cmH(2)O) through low capillary permeability, low tissue compliance, and an efficient lymphatic drainage. Enzymatic degradation of proteoglycans disrupts the endothelial basal membrane and the matrix structure, triggering the development of pulmonary edema.
متن کاملBiochemical and morphological changes in endothelial cells in response to hypoxic interstitial edema
BACKGROUND A correlation between interstial pulmonary matrix disorganization and lung cellular response was recently documented in cardiogenic interstitial edema as changes in the signal-cellular transduction platforms (lipid microdomains: caveoale and lipid rafts). These findings led to hypothesize a specific "sensing" function by lung cells resulting from a perturbation in cell-matrix interac...
متن کاملMathematical Modelling of Pulmonary Edema
The excess accumulation of water in lung interstitial or alveolar is called pulmonary edema which is caused by factors that upset the normal Starling balance in micro-circulation. Pulmonary edema disturbs the alveolar gas exchanges which are normally regulated by the respiratory system. Mathematical modelling of pulmonary edema may help to predict the lung conditions and the mechanisms involved...
متن کاملMathematical Modelling of Pulmonary Edema
The excess accumulation of water in lung interstitial or alveolar is called pulmonary edema which is caused by factors that upset the normal Starling balance in micro-circulation. Pulmonary edema disturbs the alveolar gas exchanges which are normally regulated by the respiratory system. Mathematical modelling of pulmonary edema may help to predict the lung conditions and the mechanisms involved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 290 3 شماره
صفحات -
تاریخ انتشار 2006